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Improving Temporal Coverage of the SWOT Mission
Using Spatiotemporal Kriging

Yeosang Yoon, Michael Durand, Carolyn J. Merry, and Ernesto Rodríguez

Abstract—The upcoming SurfaceWater and Ocean Topography
(SWOT) satellite mission will measure water surface elevation, its
spatial and temporal derivatives, and inundated area. These obser-
vations can be used to estimate river discharge at a global scale.
SWOT will measure a given area on mid-latitude rivers two or
three times per 22-day repeat cycle. In this paper, we suggest an
interpolation-based method of estimating water height for times
without SWOT observations (i.e., in between SWOT overpasses).
A local space-time ordinary kriging (LSTOK) method is devel-
oped. Two sets of synthetic SWOT observations are generated by
corrupting two different types of true river height with the instru-
ment error. The true river heights are extracted from: 1) simula-
tion of the LISFLOOD-FP hydrodynamic model, and from 2) in
situ gage measurements from five USGS gages. Both of these syn-
thetic SWOT observations datasets are important for the following
reasons. The model-based dataset provides a complete spatiotem-
poral picture of river height that is unavailable from in situ mea-
surements, but neglects the effects of e.g. human management ac-
tions on river dynamics. On the other hand, the gage-based dataset
samples only five locations on the river (1,050 km in length), but
represents all effects of human management, tributaries, or other
influences on river heights, which are not included in the model.
The results are evaluated by a comparison with truth and simple
linear interpolation estimates as a first-guess. The model-based ex-
periment shows the LSTOK recovered the river heights with a
mean spatial and temporal root mean square error (RMSE) of 11
cm and 12 cm, respectively; these accuracies show a 46% and 54%
improvement compared to the RMSEs of the linear interpolation
estimates. The gage-based experiment shows a temporal RMSE of
32 cm on average; the LSTOK estimates show a 23% improvement
over the linear interpolation estimates. The degradation in perfor-
mance of the LSTOK for the gage-based analysis as compared to
the model-based analysis is apparently due to the effects of human
management on river dynamics. Further work is needed to model
the effects of human management, and to extend the analysis to
consider river tributaries and the main stem of the river simulta-
neously.

Index Terms—Kriging, river height and discharge, SWOT, tem-
poral resolution.
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I. INTRODUCTION

S ATELLITE remote sensing data have been utilized to pro-
vide spatial and temporal variations in terrestrial surface

water heights [1]. In particular, satellite radar nadir altimetry
(e.g., TOPEX/Poseidon, ERS-1/2, ENVISAT, and Jason-1/2
missions) has been shown to be successful when used for
studying water surface elevation (WSE) [2], [3]. However,
radar nadir altimetry provides only spot measurements of
WSE instead of two-dimensional measurements of WSE. The
upcoming Surface Water and Ocean Topography (SWOT)
mission is a wide-swath altimeter, rather than a nadir altimeter
providing point measurements [1], [4]. Thus, the SWOT mis-
sion will provide high-resolution images of inland WSE, as
well as mapping of inundated extent and surface expression of
storage changes. Over recent years, a number of studies have
explored how to characterize river discharge and water storage
changes using SWOT data [5]–[11].
The currently proposed 22-day SWOT orbit will provide full

global coverage and will measure each point on the Earth’s sur-
face a minimum of twice per cycle. Specifically, for mid-latitude
rivers, most areas are measured two or three times, and some
areas are measured four times per 22-day cycle [8]. Thus, tem-
poral sampling intervals of SWOT will be significantly better,
compared to current satellite altimeters. Nonetheless, at a given
location on a river, SWOT measurements will not be available
on a daily frequency.
The goal of this study is to present a method of estimating

the river height for times without SWOT observations (i.e., in
between SWOT overpasses). In formulating our interpolation
strategy, we exploit the nature of flood waves. Flood waves
are translatory, in that they propagate downstream, creating at
each location a similar disturbance in the water surface ele-
vation [12]. Thus, a hydrologic event that is unobserved on
one part of the river network is likely to be observed either
downstream or upstream. Due to this fluvial interconnection,
river hydraulic variables exhibit spatiotemporal correlation, a
fact that has been exploited in past studies to interpolate hy-
draulic data on rivers [13]–[16]. Most flood waves are dynamic
(rather than kinematic) in that typical flood waves are attenu-
ated downstream due to the effects of friction [12]. Moreover,
changes in channel width and bed slope downstream would be
expected to modify the shape of the hydrograph. Our working
hypothesis is that this change in shape in the nature of the flood
wave downstream is predictable and can be modeled statisti-
cally using a relatively simple spatiotemporal correlation func-
tion. We suggest a space-time interpolation technique to accom-
plish our goal, implicitly considering the effects of floodwave
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Fig. 1. A map of the Tennessee River Basin (a), showing the USGS gages (red
dots) and dams (brown) used for this study. In order from upstream, the dams
are: Fort Loudoun Dam, Watts Bar Dam, Chickamauga Dam, Nickajack Dam,
Guntersville Dam, Wheeler Dam, Wilson Dam, Pickwick Landing Dam, and
Kentucky Dam. The number of SWOT observations per 22-day cycle over the
area is also shown (b).

attenuation and river channel geometry on flood wave propa-
gation. We test and evaluate this approach using two different
types of synthetic SWOT observations for the Tennessee River.
One is simulated from modeled river heights using a hydro-
dynamic model and the other is generated from in situ gage
measurements. The former dataset is more compatible with the
SWOT spatial measurements, while the latter dataset includes
the effects of un-modeled phenomena, such as lateral inflows
and the effects of management on the river. We evaluate the re-
sults compared with truth datasets and linear interpolation esti-
mates as a first-guess in terms of spatial and temporal accuracy.
In addition, the performance of the two experiments are evalu-
ated and discussed.

II. STUDY AREA
This study focuses on the Tennessee River, the largest tribu-

tary to the Ohio River (Fig. 1). The Tennessee River is approx-
imately 1,050 km long and drains an area of 105,000 . The
mean discharge is 2,000 . The discharge is normally high
in the winter season and is the lowest in September [17].
The main stem of the Tennessee River has nine dams/reser-

voirs used for hydroelectric power generation, flood control, and
navigation (Fig. 1(a)). Those dams/reservoirs can be classified
by two operating modes [18]. First is the storage mode to re-
tain floodwater; seven reservoirs (Fort Loudoun Lake,Watts Bar
Lake, Chickamauga Lake, Guntersville Lake, Wheeler Lake,
Pickwick Lake, and Kentucky Lake) primarily operate in this
mode. Second is the run-of-river mode to maintain a navigable
water depth; two reservoirs (Nickajack Lake and Wilson Lake)

primarily operate in this mode. Reservoir management deci-
sions are based on current rainfall and runoff conditions, based
on guide curves for each reservoir. Operating constraints, such
as power generation, floods, and drought, also play a major role
in decision-making. The red dots in Fig. 1(a) show the U.S.
Geological Survey (USGS) stream gages (http://waterdata.usgs.
gov) that were used for this study. The gages are located next
to the Chickamauga Dam, Guntersville Dam, Wilson Dam, and
Pickwick LandingDam (in order of location from the upstream).
For example, the ChickamaugaDam is located 758 km upstream
from the mouth of the Tennessee River (just before gage 68000,
Fig. 1(a)). The hydroelectric generation capacity is about 160
megawatts. The water elevation of the Chickamauga Reservoir
is required to maintain at least 205.7 m in the summer and 207.9
m during the winter (elevations refer to meters above sea level).
Flood control considerations are also highly important to the
Tennessee Valley Authority (TVA) system of dams. The opera-
tion policy on flood risk varies from reservoir to reservoir, con-
sidering changes in peak flows and downstream flood conditions
[18].
Clearly, if all of the reservoirs are operating under identical

conditions and constraints, then one would expect the river
heights downstream to maintain a high degree of correlation.
However, if one reservoir operating rules differ from the others,
or are subject to different operating conditions at certain times,
then the flood waves will no longer propagate identically above
and below the dams. The net effect of this is that the spa-
tiotemporal autocorrelation of the water surface elevation will
decrease due to the effect of human management. For example,
consider the modeled and measured river height anomaly of
gages 93500 and 94500 from days 0–100 shown in Fig. 2(b).
These are the downstream-most gages. The modeled height
anomalies are approximately constant during this time, with
small variations of less than 1 m. The measured height anom-
alies for both gages decrease monotonically by approximately
1.5 m over the course of 100 days. Presumably, this water
level decrease was driven by decreased releases from Pickwick
Landing Dam.

III. SYNTHETIC SWOT OBSERVATIONS
We generate two sets of the synthetic SWOT measurements

by corrupting the two different types of true river height with
the SWOT instrument error. Two different types of true river
heights are used: the first is the modeled river height simu-
lated by a hydrodynamic model, and the second is derived
from USGS stream gage data. Each method has advantages
and limitations. The hydrodynamic model can provide river
heights of the entire study site, while the gage measurements
are limited to the five gage locations. However, the modeled
river heights may not sufficiently reflect the real system due
to simplifying assumptions and un-modeled phenomena (e.g.,
lateral inflows, flood plains, and dams and reservoirs) in the
hydrodynamic model, while all such factors are included in the
gage measurements.
Interpolating synthetic SWOT measurements generated from

a simplified hydrodynamic model (model-based SWOT), and
using gaged heights on the same river (gage-based SWOT),
should capture the two issues—simulation and truth—of how
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Fig. 2. Time series of SWOT water height anomaly generated from: (a)
modeled water height (1991–1992), and (b) UGSG gaging water height
(2009–2010). The numbers in parentheses refer to pixel location along the
Tennessee River.

well the interpolation is expected to work. The simplified
hydrodynamic model will not fully capture the true complex
spatiotemporal correlations in a river; this model-based SWOT
analysis is expected to represent an ideal case where we would
expect interpolation to perform well. The Tennessee River
is arguably a highly-regulated river system for hydroelectric
power generation, flood control, and navigation, given the nine
dams and reservoirs. Reservoirs and other human management
actions may be expected to decrease the spatiotemporal au-
tocorrelations between points on the river. The in situ gage
measurements reflect not only human management actions, but
also the river channel complexity (i.e., lateral inflows, flood-
plains, tributaries). In addition, as mentioned above, the lack
of available gage measurements limits the sampling number
for the gage-based SWOT analysis. Thus, we would expect
interpolation of the gage-based SWOT to be a worst-case of
how the interpolation would perform.

A. Virtual SWOT Observations Based on the Hydrodynamic
Model

The generation of SWOT observations from the hydrody-
namic model consists of three parts: generating a synthetic

model-based “truth,” modeling SWOT spatiotemporal sam-
pling via orbit simulation, and modeling SWOT height error
characteristics. First, the synthetic truths (e.g., river height,
velocity, and discharge) are simulated by using the LIS-
FLOOD-FP model. LISFLOOD-FP is a 1 D/2 D hydrodynamic
model based on raster data input to represent floodplain flow
and to simulate river channel flow using a rectangular channel
approximation [19]. Here, we apply the 1 D scheme based on
the diffusive wave approximation of the St. Venant equations to
focus on hydrodynamic modeling of the in-channel flow [20].
For the LISFLOOD-FP model, the channel centerline, channel
width, bed elevation, channel roughness, DEM, and upstream
flow boundary conditions are needed. Here we use the model
inputs described by Durand et al. [9]. The centerlines and bed
elevations were derived from the Hydro 1 K dataset [21], which
were defined at an approximately 1 km spatial resolution.
The river channel widths are estimated from the Landsat-5
and Landsat-7 imagery [22] using the algorithm developed
by Pavelsky and Smith [23]. The river depths and discharges
extracted from the USGS gages were used as boundary con-
ditions. The modeled time period is June 1, 1991 to May 31,
1992.
Second, the SWOT observations are simulated by overlaying

the SWOT swath coverage on the synthetic truths. The SWOT
swath coverage of 140 km is derived from the ground track that
is simulated by using a predicted satellite location. The number
of SWOT observations per 22-day cycle is shown in Fig. 1(b).
Third, the expected instrument errors are added to the syn-

thetic truth data. In this study, we model only height measure-
ment error. The instrument spatial resolution in the cross-track
direction will vary from 70 m to 10 m; the best resolution in the
along-track direction will be about 2 m. A more detailed speci-
fication of the SWOT mission is found in Rodríguez [24]. Here,
we conservatively assume that the spatial resolution in both the
along-track and cross-track directions is 50 m to simplify the
measurement error model. The instrument measurement error is
simulated with a zero mean Gaussian random error with a stan-
dard deviation of 50 cm for a 50 m by 50 m pixel, following pre-
vious work (e.g., [8], [9]). The resolution of the LISFLOOD-FP
model and river widths used in the model are utilized to cal-
culate a SWOT height error at each pixel, assuming that errors
are uncorrelated in space to simplify the model. Based on these
assumptions, we modeled height error standard deviations that
range from 2.4 cm to 5.9 cm for a LISFLOOD-FP model pixel
(1 km by 1 km).

B. Virtual SWOT Observations Based on In Situ Gage Data

Similar to the previous approach, we generated SWOT obser-
vations from in situ gage data by considering the SWOT swath
coverage and sensor orbit sampling, as well as corrupting the ob-
servations with instrument error. Here, the time series of SWOT
observations at only five locations of the study site is generated;
the experimental period is June 1, 2009 to May 31, 2010. The
main reason for the restricted datasets and time difference is the
lack of available USGS gage measurements during other time
periods; detailed information for the in situ gages used in the
study is shown in Table I.
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TABLE I
INFORMATION OF THE USGS GAGES USED TO DERIVE THE RIVER HEIGHT FOR

GENERATING SYNTHETIC SWOT OBSERVATIONS

Fig. 2 shows the time series of gage-based SWOT observa-
tions (in terms of height anomaly) for the Tennessee River, as
well as the time series of model-based SWOT observations at
the same gage locations; note that the experimental time periods
are different for the model and gage-based analysis. The tem-
poral profile between themodel-based SWOT (Fig. 2(a)) and the
gage-based SWOT (Fig. 2(b)) varies, even considering the dif-
ferences of the selected experimental period. While the height
anomaly of the model-based SWOT shows a fairly steady flow
pattern, the height anomaly of gage-based SWOT shows an ir-
regular flow pattern at certain time periods (see Fig. 2(b)). For
example, the height ranges of gages 68000 and 77500 are sig-
nificantly different at 4.8 m and 1.7 m, respectively. The height
anomaly for gage 68000 shows a monotonically decreasing pat-
tern during the first 50 days. The correlation coefficient between
the gages 68000 and 77500 is 0.25. Presumably, the irregular
gage records may reflect the activities of the Chickamauga Dam
operation, such as for flood control or hydroelectric power gen-
eration. On the other hand, the river model for the Tennessee
River did not consider locks and dams, which leads to differ-
ences of temporal patterns in the real situation and the modeled
river depth.

IV. SPATIOTEMPORAL INTERPOLATION STRATEGY
We interpolate the SWOT river height anomaly instead of

absolute river height to limit the differences of bed elevation
between the stream locations. The river height anomaly is
estimated by subtracting the river height from the initial river
height for an experimental period; note .
We assume that is known, but it can be replaced with the
average river height, if an accumulation of SWOT observations
becomes sufficient in the future.
In this study, we essentially adapt the temporal ordinary

kriging (OK) approach by 1) calculating a time lag between
pixels to allow for the flood wave travel time; and 2) allowing
both the decorrelation time and the height anomaly variance
to be different at each pair of pixels, which accounts for the
effects of a spatially-variable river bed form on the temporal
variations in water height. In sum, this amounts to a temporal
ordinary kriging, adjusted by a spatially-dependent lag time,
variance, and decorrelation time. Our approach is explained in
more detail below.

A. Ordinary Kriging
OK is a geostatistical method with a goal to minimize the

error variance. OK is suited to interpolate geo-hydrological vari-
ables from sparse observations (e.g., [13], [14]). Estimates of

unobserved values are calculated using weighted linear
combinations of the available data:

(1)

where is the measured value at location , and is the
corresponding weight, which is estimated by specifying the au-
tocorrelation function relating measurements of across
space and time. To ensure that is unbiased, the sum of
the weights is constrained to unity:

(2)

In order to minimize the variance of the modeled error, the La-
grange parameters technique is utilized. A more detailed de-
scription for the OKmethod is founded in Isaaks and Srivastava
[25].

B. Local Space-Time Ordinary Kriging
In this study, our goal is to evaluate a potential method of esti-

mating river height at unobserved times (i.e., in between SWOT
overpasses) by the interpolation of SWOT measurements. In
formulating our interpolation strategy, we exploit the nature of
flood waves. Flood waves are translatory, in that they propagate
downstream, creating at each location a similar disturbance in
the water surface elevation. Thus, a hydrologic event that is un-
observed on a given part of the river network is likely to be ob-
served either downstream or upstream. For example, the Ten-
nessee River near gage 75500 in Table I is observed on days
16 and 22 within the 22-day SWOT repeat period, but is not
measured on other days. However, its upstream or downstream
gages (i.e., gages 68000, 89500, and 93500) are measured on
days 4, 10, 13, and 19 during the SWOT orbital period. Mea-
surements for the Tennessee River near gage 75500 can be com-
plemented using the upstream or downstream observed infor-
mation.
The OK method is a straightforward technique to interpo-

late variables in only the spatial or in only the temporal domain
[15]. In this study, however, we need to consider both spatial
and temporal dependence. For instance, Fig. 3 shows the poten-
tial sample locations (i.e., SWOT coverage for both ascending
and descending passes on day 16) to estimate the river height
of a target location (pixel 632) that is not measured by SWOT
on day 16. Note that the coverage of the sample location will
vary corresponding to which day SWOT provides an estimate
at the location. It is clear that while the river heights are mea-
sured the same day, each SWOT measurement shows obviously
different values along the river channel due to the river channel
geometry and lateral inflows. The differences cannot be fully
defined by only spatial or temporal dependence. Fig. 4 shows a
time series of modeled river height anomaly at pixels 504 and
632, separated by 130 km; these pixels correspond to the lo-
cations of gages 75500 and 89500, respectively. While there is
clearly a strong coherence between the two time series, Fig. 4 il-
lustrates several differences between the time series. First, there
is a time lag: events occur at the upstream gage on the order of
one day earlier than on the downstream gage. Second, the height
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Fig. 3. Potential sample locations (i.e., SWOT coverage for both ascending and
descending passes on day 16) for the target (pixel 632) that are not measured by
the SWOT sensor on day 16.

Fig. 4. Time series of river modeled river height anomaly at gages 75500 (pixel
504) and 89500 (pixel 632).

anomaly range at the downstream gage (3.0 m) is significantly
greater than the height anomaly range at the upstream gage (2.3
m). The difference in range can be caused by the diffusion flood
wave, lateral inflows, or channel geometry (e.g., bed slope and
channel width) at the two locations. Our interpolation scheme
must take these factors into account in order to be successful.
In this study, we utilize a local space-time ordinary kriging

(LSTOK) method to address the variances of the river depth in
the space and time domain, implicitly considering the effects
of floodwave attenuation and river channel geometry on flood-
wave propagation. The primary analysis for the LSTOK scheme
is identical to the OK method, interpolating from sparse obser-
vations based on optimal weights as shown in (1). Themajor dif-
ference between the OK and the LSTOKmethods is the strategy
for estimating the kriging weights . The weights of the OK
method are traditionally generated from a semivariogram anal-
ysis, utilizing only spatial or only temporal dependence. On the
other hand, the weights of the LSTOK are estimated to consider
spatiotemporal phenomena. Our method proceeds as follows.
First, we parameterize the covariance matrix. Specifically, for
each pair of points, we parameterize three unknown variables
in the variogram: the covariance between the time series , the
lag between the time series , and the de-correlation time be-
tween any two locations and in the study site. This amounts to

Fig. 5. Example result of nonlinear regression model used between pixels 504
and 632.

a modified semivariogram analysis, where we take into account
the spatial dependence in height anomaly, as discussed above.
Here, we first calculated the covariance ; is the
vector of observation day of SWOT) between any two sample
locations using a time series of synthetic SWOT measurements.
Given the covariance, the variables are estimated using a non-
linear regression model; the nonlinear model is developed based
on the Levenberg-Marquardt algorithm, which is an iterative
technique to solve nonlinear least-squares problems [26]. We
assume a modified exponential covariance model be-
tween each pair of pixels in the domain:

(3)

Fig. 5 shows an example result of the nonlinear fitting for three
unknown variables between locations 504 and 632 from the
model-based SWOT (previously shown in Fig. 4). From the
nonlinear model, , , and
are estimated as 0.33 , 0.5 days, and 11.5 days, respectively.
Second, given the estimated , , and vari-

ables between any two locations and in the study site, we re-
calculate the spatiotemporal covariance between pairs of sample
points, using the modified exponential covariance model,
as well as the spatiotemporal covariance between the sample
points and the estimation point, .

(4)

(5)

Finally, the weight matrix of the LSTOK is defined as:

(6)

where the weight matrix contains each weight of the un-
known observations, and a Lagrange multiplier :

(7)
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Fig. 6. Example of the estimates of the river height anomaly at pixel 504; the enlarged boxes—(b) and (c)—are shown for detail.

The matrix contains combinations of the spatiotemporal co-
variance ; the subscript denotes the total number of observa-
tions:

...
. . .

...
... (8)

The matrix contains a combination of the spatiotemporal co-
variance :

(9)

In addition, the LSTOK method contains a localization tech-
nique to reduce the computational burden of a covariance ma-
trix. Observations located far from a given pixel do not in-
clude useful information for interpolation. For the localization
scheme, we utilize a moving window technique with the search
distance of 250 km, which is the range of spatial correlation that
was found in our semivariogram analysis above.

C. Experimental Design
Observing system simulating experiments (OSSE) was de-

signed for evaluating the potential for estimating river height for
times without SWOT observations. The OSSE is a well-known
technique to evaluate the potential impacts of new observing

systems under consideration for deployment [5], [8]. Here, we
present two experiments in the Tennessee River to evaluate
the algorithm using two different types of SWOT observa-
tions, i.e., model-based SWOT (described in Section III-A)
and gage-based SWOT (described in Section III-B). First,
two different sets of truth river heights over the study site
are extracted from the river modeling result and in situ gage
data, respectively. Second, synthetic SWOT observations are
generated from the truth river heights with instrument errors as
described in Section III. Third, river heights for times without
SWOT observations are estimated using the LSTOK method
described in Section IV. Finally, the results are evaluated by a
comparison with the true river heights. Linear interpolation is
the simplest method to make an inference on missing values.
Here, we used the simple linear interpolation method as a
first-guess to fill the temporal gap of the SWOT observations.
In addition, we evaluate and discuss the performance of the
results from the two experiments.

V. RESULTS AND DISCUSSION

A. Model-Based SWOT Observations
Fig. 6 shows the example LSTOK estimates of river height

anomaly at the location around 504 km from the upstream lo-
cation, compared with the truth and linear interpolation esti-
mates. The linear interpolation estimates of height anomaly at
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Fig. 7. River height anomaly along the river channel vs. time for (a) truth, (b) linear interpolation estimates, and (c) LSTOK estimates.

TABLE II
MEAN TEMPORAL RMSE OF RIVER DEPTH ANOMALY BETWEEN THE TRUTH,
AND LINEAR INTERPOLATION AND LSTOK FROM GAGE-BASED SYNTHETIC
SWOT OBSERVATIONS. THE IMPROVEMENT IN THE LSTOK METHOD

COMPARED TO THE LINEAR INTERPOLATION IS ALSO SHOWN

this location had a 24 cm root mean square error (RMSE).While
the estimates do miss some abrupt changes in river height, the
LSTOK estimates of height anomaly are clearly improved over
the linear interpolation estimates. The LSTOK error shows a 7
cm RMSE, which is a 72% improvement over the linear interpo-
lation estimates. Note that the interpolation is applied to noisy
measurements with a standard error ranging from 2.4 to 5.9 cm
(as discussed in Section III). Fig. 7 shows the time series of river
height anomaly along the entire river channel for the truth, linear
interpolation, and the LSTOK method. While both linear and
LSTOK interpolations yield a spatiotemporal pattern similar to
the truth, the linear interpolator generally has more rapid transi-
tions in height for the major event occurring during the 190–200
day period. The linear interpolator also misses many transitions
in flow (visible as vertical lines in the truth) during the low flow
period in the first 150 days of the study period. Visually, the
LSTOK estimate captures these variations much better.
Fig. 8 shows the time series of river height anomaly errors for

the estimates compared to the true state. Although errors per-
sist in the LSTOK height estimate during the major event from

day 190–200, they are dramatically reduced, from maxima be-
tween 200 cm and 300 cm, with errors generally on the order
of 20 cm to 30 cm. The LSTOK approach clearly leads to an im-
provement of the accuracy in both the space and time domain
and shows the possibility to estimate river height at unobserved
times. The mean spatial and temporal RMSEs of LSTOK esti-
mates are 11 cm and 12 cm, respectively; the errors show a 46%
and 54% improved accuracy compared to RMSEs of 20 cm and
25 cm for the linear interpolation estimates, respectively.

B. Gage-Based SWOT Observations

Fig. 9 shows the example LSTOK estimates of river height
anomaly at gage 75500, compared with the truth and linear in-
terpolation estimates. The linear interpolation estimates had 38
cm RMSE; the estimates clearly miss the abrupt changes of
the river height. A visual inspection of Fig. 9 shows that the
LSTOK estimates recover much of the temporal variations in
height anomaly that were missed in the linear interpolation. The
error of the LSTOK estimate is 27 cm, which is 30% less than
the linear interpolation estimates.
Table II shows the mean temporal RMSE of each gage loca-

tion in the Tennessee River, comparing the truth with the linear
interpolation and LSTOK estimates. Overall, the LSTOK esti-
mates show a 23% improvement in terms of temporal RMSE
compared to the linear interpolation estimates; the improve-
ments vary from 17% to 30%. The USGS gages 75500 and
89500 show more improvement than others. The reason for this
is apparently that both are fairly highly correlated with the up-
stream-most gage 68000. This is due to the fact that gage 68000
is measured on three days, only one of which overlaps with ei-
ther the 75500 or 89500 gages (see Table I). The measurement
at 68000 on day 4 is likely very important, in this regard. Note
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Fig. 8. Errors of river height anomaly along the river channel vs. time for (a) linear interpolation estimates, and (b) LSTOK estimates.

Fig. 9. The height anomaly estimates at gage 75500 using the gaged-based
SWOT observations.

that at gage 75500, there is a 16-day gap between the measure-
ments on day 22 for a given cycle, and that on day 16 of the
next cycle. There is another 16-day gap at 89500, as well. The
measurement on day 4 significantly reduces the size of the mea-
surement gap, highlighting the utility of the LSTOK interpo-
lator. Measurements at other gages also help reduce the size
of the measurement gap. In the case of gage 68000, the size
of the measurement gap can be reduced from measurements at

Fig. 10. The temporal RMSE for the five gages (the gage-based analysis,
model-based analysis using the five gage location datasets, and the model-based
analysis based on the entire datasets).

gages 75500 and 89500. However, gage 68000 shows less cor-
relation to gages 75500 and 89500, with a 17% improvement,
which is the lowest improvement compared to all the gages. The
downstream gages 93500 and 94500 are located at 451 km and
539 km, respectively, from gage 68000; thus, the day 4 mea-
surements are less useful to the downstream gages. In addition,
gages 93500 and 94500 are highly correlated between them-
selves and are observed at the same time, which reduces the
performance of the LSTOK method.
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Fig. 11. Spatiotemporal covariance matrix between gages 68000 (pixel 289) and 75500 (pixel 504), for (a) model-based analysis, and (b) gage-based analysis.
The horizontal line in figures (a) and (b) refers to day 173 of the SWOT observation. The correlation profile for day 173 is shown in (c).

C. On the Difference Between the Model-Based and
Gage-Based Analysis

The analysis thus far shows that the LSTOK method showed
a 54% improvement over the linear interpolator for the model-
based SWOT analysis, and a 23% improvement over the linear
interpolator for the gage-based SWOT analysis. The reason for
the difference is two-fold. First, the river itself is likely to ex-
hibit less correlation in reality than in the model. One of the
major reasons is that human decisions govern whether water is
released from a dam or not (refer to the location of gages in
Fig. 1(a)). The existence of dams and reservoirs along the river
channel can also decrease the correlation. This would be diffi-
cult or impossible to model using a parsimonious autocorrela-
tion function. Indeed, the positive results shown in Fig. 9 indi-
cate that at least for this river, human control of the river does
not completely deteriorate the spatiotemporal autocorrelation in
river height anomaly. The second reason for the difference be-
tween the gage and model analysis is that in the model-based
SWOT case, there are 1,042 pixels measured, whereas there are
only five gages. This large number of pixels means that there are
measurements frommore overpasses incorporated into the anal-
ysis. Incorporating even just one more overpass into the anal-
ysis made a significant difference in the gage-based analysis, as
discussed in Section V-B. Note, too that the study periods are

different for the model- and gage-based analysis (see Fig. 2),
although this should not dramatically affect the difference be-
tween model- and gage-based analysis.
An important question is whether the effects of human con-

trol or the number of gage measurements is more important
in the gage-based SWOT analysis not performing as well as
the model-based SWOT. We can address this in part by re-
doing the model-based SWOT analysis, but only at the five
pixels where we have gages. The SWOT observations, derived
from the model-based SWOT, have the same number of ob-
servations and observing locations as the gage-based SWOT.
Fig. 10 shows the temporal RMSE for the model-based SWOT,
the gage-based SWOT, and the model-based SWOT at the gage
locations. For all five gages, the RMSE of the model-based
SWOT (using all 1,042 pixels) is very similar to the RMSE of
the model-based SWOT based on the five gage locations. For in-
stance, at gage 68000, the model-based SWOTRMSE (based on
all 1,042 pixels) is 19 cm, and the model-based SWOT (based
on five pixels at the gage locations) is 21 cm. For that gage,
the gage-based analysis gives an RMSE of 30 cm. This anal-
ysis seems to show that the effects of human management on
the river are more important than the fact that the gage-based
analysis is only based on five locations.
Finally, we compare the parameterized covariance matrix for

the model-based and gage-based analysis. A major difference
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between the model-based and gage-based analysis is the lag dis-
tance in temporal dependence. Fig. 11 shows the example spa-
tiotemporal covariance matrix between gages 68000 and 77500.
In Fig. 11, the gage-based analysis shows an abrupt decrease in
covariance at larger lag distances, compared to the model-based
analysis. The correlation profile of day 173 at lag distances is
shown in Fig. 11(c), which clearly represents this relationship.
This indicates that gage-based SWOT observations are less cor-
related than themodel-based SWOT observations, which affects
the performance of the method. This is almost certainly due to
the effects of human management on the river heights.
As a final caveat, it should be noted that the total standard de-

viation of the gage-based river height anomaly at these five pixel
locations ranges from 59 to 161 cm. The linear interpolator de-
creases the RMSE to between 32 to 65 cm. The LTSOK interpo-
lator we have proposed further reduces this to between 23 and
50 cm, an average improvement of 23%. From our model-based
analysis this can be further improved to 11 or 12 cm for un-man-
aged rivers. Finally, we should note that the decorrelation time
is expected to be a function of river size [27]. The Tennessee
River drains an area of 105,000 , and has a mean discharge
is 2,000 ; smaller rivers may be expected to perform less
well.

VI. CONCLUSIONS
In this study, we present a modified ordinary kriging method

for interpolating river heights from the SWOT mission. The
algorithm is evaluated using two different types of synthetic
SWOT observations (i.e., model-based SWOT and gage-based
SWOT). These observations are modeled over the study site
using the LISFLOOD-FP hydrodynamic model and in situ gage
measurements, respectively. Using the model-based SWOT ob-
servations, the time series of river heights are estimated with
the mean spatial and temporal RMSEs of 11 cm and 12 cm, re-
spectively. The errors show a 46% and 54% improved accuracy
compared to the linear interpolation estimates, respectively. Re-
garding the gage-based SWOT observations, the river height es-
timates show a 23% improvement compared to the linear inter-
polation estimates. Based on a third experiment, it seems that
the reason is the differences in spatiotemporal autocorrelation,
due to the role of human management of the river.
Overall, these results suggest that the LSTOK method will

prove useful for interpolating SWOT observations. The recov-
ered time series of river height can lead to an improvement in
estimation of river discharge via the Manning’s equation (e.g.,
[9]) and may be used to anticipate a hydrologic event leading to
better water resources management.
In this study, we develop and explore the LSTOK method

using datasets of a single main channel. In the future, a complex
river network with multiple tributaries and floodplains needs to
be considered for use in general purpose applications. To ad-
dress this, we may need to extend the method using, for ex-
ample, a conditional simulation technique [28] that can give an
advantage in the assumption of stationarity and variations of the
mean value. Future work will also consider the generation of
more realistic SWOT observations by adding additional type of
errors, such as atmospheric and geometric effects. Beyond the
SWOT observations, the much larger constellation of altimeters

(e.g., JASON-1/2, Sentinel, Cryosat, etc.) will collectively pro-
vide point sampling, which will give additional benefits for the
method. Future work will also investigate the feasibility of in-
corporating multi-sensor observations.
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